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1 Introduction

It is known that the Cauchy problem for elliptic equations is unstable relatively small change
in the data, i.e. incorrect (example Hadamard, (see for instance Adamar, 1978)). In unstable
problems, the image of the operator is not is closed, therefore, the solvability condition can
not be is written in terms of continuous linear functionals. So, in the Cauchy problem for
elliptic equations with data on part of the boundary of the domain the solution is usually
unique, the problem is solvable for everywhere dense a set of data, but this set is not closed.
Consequently, the theory of solvability of such problems is much more difficult and deeper than
theory of solvability of Fredholm equations. The first results in this direction appeared only
in the mid-1980s in the works of L.A. Aizenberg, A.M. Kytmanov, N.N. Tarkhanov (see for
instance (Carleman, 1926)).

The uniqueness of the solution follows from Holmgren’s general theorem (see for instance
Bers at al., 1966). The conditional stability of the problem follows from the work of A.N.
Tikhonov (Tikhonov, 1963), if we restrict the class of possible solutions to a compactum.

In this paper we construct a family of vector-functions Uσ(δ)(x) = U(x, fδ) depending on a
parameter σ and it is proved that, under certain conditions and a special choice of the parameter
σ = σ(δ); as δ → 0, the family Uσ(δ)(x) converges in the usual sense to a solution U(x) at the
point x ∈ G.

Following A.N. Tikhonov (Tikhonov, 1963), a family of vector-functions Uσ(δ)(x) is called
a regularized solution of the problem. A regularized solution determines a stable method of
approximate solution of the problem. For special domains, the problem of extending bounded
analytic functions in the case when the data is specified exactly on a part of the boundary
was considered by Carleman (Carleman, 1926). The researches of T. Carleman were continued
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by G.M. Goluzin and V.I. Krylov (see for instance Goluzin at al., 1933). A multidimensional
analogue of Carleman’s formula for analytic functions of several variables was constructed in
(see for instance Aizenberg, 1990). The use of the classical Green’s formula for construct-
ing a regularized solution of the Cauchy problem for the Laplace equation was proposed by
Academician M.M. Lavrent’ev (Lavrent’ev, 1957; Lavrent’ev, 1962), in his famous monograph.
Extending Lavrent’ev idea, Yarmukhamedov constructed the Carleman function for the Cauchy
problem for the Laplace and Helmholtz equations (Yarmukhamedov, 1977; Yarmukhamedov,
1997; Yarmukhamedov, 2004). The Cauchy problem for the multidimensional Lame system is
considered by O.I. Makhmudov and I.E. Niyozov (see for instance Makhmudov at al., 2006;
Niyozov at al., 2014). Boundary problems for Helmholtz equation and the Cauchy problem for
Dirac operators it was considered by A.A. Shlapunov (see for instance Shlapunov, 2011). The
construction of the Carleman matrix for elliptic systems was carried out by Sh. Yarmukhamedov,
N.N. Tarkhanov, A.A. Shlapunov, I.E. Niyozov, O.I. Makhmudov, and others.

The system considered in this paper was introduced by N.N. Tarkhanov. For this system, he
studied correct boundary value problems and found an analogue of the Cauchy integral formula
in a bounded domain. In many well-posed problems for a system of equations of elliptic type of
the first order with constant coefficients, the factorizing operator of Helmholtz, the calculation
of the value of the vector function on the whole boundary is inaccessible. Therefore, the problem
of reconstructing, solving a system of equations of elliptic type of the first order with constant
coefficients, the factorizing operator of Helmholtz (Juraev, 2012; Juraev, 2017a; Juraev, 2017b;
Juraev, 2018a; Juraev, 2018b; Juraev, 2018c), is one of the topical problems in the theory of
differential equations.

In this paper, we present an explicit formula for the approximate solution of the Cauchy
problem for the matrix factorizations of the Helmholtz equation in a bounded region on the
plane. The two-dimensional case requires special consideration, in contrast to three or more
dimensions in many mathematical problems. Our formula for an approximate solution also
includes the construction of a family of fundamental solutions for the Helmholtz operator on the
plane. This family is parametrized by some entire function K(w), the choice of which depends
on the dimension of the space. This motivates a separate study of regularization formulas in
flat domains and leads to improved estimates compared to the three-dimensional case.

Let R2 be a two-dimensional real Euclidean space,

x = (x1, x2) ∈ R2, y = (y1, y2) ∈ R2.

We introduce the following notation:

r = |y − x| , α = |y1 − x1| , w = iτ
√
u2 + α2 + β, w0 = iτα+ β,

u ≥ 0, β = τy2, τ = tg π
2ρ , ρ > 1, ∂

∂x =
(

∂
∂x1

, ∂
∂x2

)T
,

∂
∂x → ξT , ξT =

(
ξ1
ξ2

)
is transposed vector for ξ,

U(x) = (U1(x), ... , Un(x))
T , u0 = (1, ... , 1) ∈ Rn, n = 2m, m = 2,

E(z) =

∥∥∥∥∥∥
z1 ... 0
.......
0 ...zn

∥∥∥∥∥∥ diagonal matrix, z = (z1, ... , zn) ∈ Rn.

Gρ ⊂ R2 is a bounded simply connected domain whose boundary consists of segments of
rays

|y1| = τy2, 0 < y2 ≤ y0 <∞,
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with the beginning at zero and the arc S of a smooth curve lying inside the angle of width π
ρ ,

i.e. ∂Gρ = S
∪
T, T = ∂Gρ\S.

We assume that (0, x2) ∈ Gρ, x2 > 0. Gρ is called a domain of the type of a curvilinear
triangle.

Let D(ξT ), (n × n)−be a matrix with elements consisting of a set of linear functions with
constant coefficients of the complex plane for which the condition is satisfied:

D∗(ξT )D(ξT ) = E((|ξ|2 + λ2)u0),

where D∗(ξT ) is the Hermitian conjugate matrix D(ξT ), λ−a real number.

Let x = (x1, x2) ∈ Gρ, y = (y1, y2) ∈ ∂Gρ. We consider in the domain Gρ a system of
differential equations

D

(
∂

∂x

)
U(x) = 0, (1)

where D
(

∂
∂x

)
is the matrix of differential operators is of the first order.

We denote by A(Gρ) the class of vector functions in the domain Gρ, of continuous on Gρ =
Gρ

∪
∂Gρ and satisfying system (1).

2 The Cauchy problem and the construction
of the Carleman function

Let U(y) ∈ A(Gρ) and

U(y)|S = f(y), y ∈ S. (2)

Here, f(y) is a given continuous vector function on S.

It is required to restore the vector function U(y) in the domain Gρ, based on its values f(y)
on S.

If U(y) ∈ A(Gρ), then the following Cauchy type integral formula is true

U(x) =

∫
∂Gρ

M(y, x)U(y)dsy, x ∈ Gρ, (3)

where

M(y, x) =

(
E

(
− i

4
H

(1)
0 (λr)u0

)
D∗

(
∂

∂y

))
D(tT ).

Here t = (t1, t2) is the unit outward normal, carried out at the point y, the surface ∂Gρ,

− i
4H

(1)
0 (λr) is the fundamental solution of the Helmholtz equation, defined through the Hankel

function of the first kind (Aleksidze, 1991).

We denote byK(w) is an entire function that takes real values for a real w (w = u+iv, u, v−
are real numbers) and satisfies the following conditions:

K(u) ̸= 0, sup
v≥1

|vpKp(w)| = M(u, p) <∞, −∞ < u <∞, p = 0, 1, 2. (4)

The function Φ(y, x) at y ̸= x is defined by the following equation:

Φ(y, x) =
1

2πK(x2)

∞∫
0

Im
K(w)

w − x2

uI0(λu)√
u2 + α2

du. (5)

Here I0(λu) = J0(iλu) is the Bessel function of the first kind of zero order (see for instance Bers
at al., 1966).
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In the future, we use the following equalities

2πK(x2)
∂Φ(y, x)

∂y1
=

(y1 − x1)ReK(w0)− sign(y1 − x1)(y2 − x2)ImK(w0)

r2
−

−(y1 − x1)λ

∞∫
0

√
u2 + α2ReK(w)− (y2 − x2)ImK(w)

u2 + r2
· I1(λu)du√

u2 + α2
, y ̸= x,

w0 = i |y1 − x1|+ y2, I1(λu) = I
′
0(λu)

(6)

and

2πK(x2)
∂Φ(y, x)

∂y2
=

(y2 − x2)ReK(w0)− (y1 − x1)ImK(w0)

r2
−

−λ
∞∫
0

(y2 − x2)ReK(w)−
√
u2 + α2ImK(w)

u2 + r2
I1(λu)du, y1 ̸= x1,

(7)

which are obtained from (5).
In the formula (5), choosing

K(w) = Eρ(σ
1/ρw), K(x2) = Eρ(σ

1/ργ), γ = τx2, σ > 0, (8)

we get

Φσ(y, x) =
Eρ(σ

1/ργ)

2π

∞∫
0

Im
Eρ(σ

1/ρw)

w − x2

uI0(λu)√
u2 + α2

du,

σ ≥ λ+ σ0, σ0 > 0.

(9)

Here Eρ(σ
1/ρw) is the entire Mittag-Leffler function.

Accordingly, in formulas (6) - (7), using equalities (8) and choosing

K(w0) = Eρ(σ
1/ρw0), w0 = iτα+ β, β = τy2, σ > 0, (10)

we obtain the following analogous formulas

2πEρ(σ
1/ργ)

∂Φσ(y, x)

∂y1
=

=
(y1 − x1)Re exp(Eρ(σ

1/ρω0) + sign(y1 − x1)(y2 − x2)Im exp(Eρ(σ
1/ρω0)

r2
−

−(y1 − x1)λ

∞∫
0

√
u2 + α2Re exp(Ep(σ

1/ρω)− (y2 − x2)Im exp(Ep(σ
1/ρω)

u2 + r2
· I1(λu)du√

u2 + α2
,

y ̸= x, ω0 = iτα+ β, β = τy2,

(11)

and

2πEρ(σ
1/ργ)

∂Φσ(y, x)

∂y2
=

(y2 − x2)Re exp(Eρ(σ
1/ρw0) + (y1 − x1)Im exp(Eρ(σ

1/ρw0)

r2
−

−λ
∞∫
0

(y2 − x2)Re exp(Eρ(σ
1/ρw)−

√
u2 + α2Im exp(Eρ(σ

1/ρw)

u2 + r2
I1(λu)du, y1 ̸= x1,

w0 = iτα+ β, β = τy2.
(12)
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Lemma 1. Let x = (x1, x2) ∈ Gρ, y ̸= x, σ ≥ λ+ σ0, σ0 > 0, then
1) at β ≤ α inequalities are satisfied

|Φσ(y, x)| ≤ C(ρ)E−1
ρ (σ

1/ρw)σ exp(−σγρ) , σ > 1, x ∈ Gρ, (13)

∣∣∣∣∂Φ(y, x)∂y1

∣∣∣∣ ≤ C(ρ)E−1
ρ (σ

1/ρw)σ exp(−σγρ) , σ > 1, x ∈ Gρ, (14)

∣∣∣∣∂Φ(y, x)∂y2

∣∣∣∣ ≤ C(ρ)E−1
ρ (σ

1/ρw)σ exp(−σγρ) , σ > 1, x ∈ Gρ. (15)

2) at β > α inequalities are satisfied

|Φσ(y, x)| ≤ C(ρ)E−1
ρ (σ

1/ρw)σ exp(−σRewρ
0) , σ > 1, x ∈ Gρ, (16)

∣∣∣∣∂Φ(y, x)∂y1

∣∣∣∣ ≤ C(ρ)E−1
ρ (σ

1/ρw)σ exp(−σRewρ
0) , σ > 1, x ∈ Gρ, (17)

∣∣∣∣∂Φ(y, x)∂y2

∣∣∣∣ ≤ C(ρ)E−1
ρ (σ

1/ρw)σ exp(−σRewρ
0) , σ > 1, x ∈ Gρ. (18)

Here C(ρ) is the function depending on ρ.

Recall the basic properties of the Mittag-Leffler function. The entire function of Mittag-
Leffler is defined by a series

∞∑
n=1

wn

Γ(1 + ρ−1n)
= Eρ(w), w = u+ iv,

where Γ(s) is the Euler gamma function.
We denote by γε(β0)(ε > 0, 0 < β0 < π) the contour in the complex plane ζ, run in the

direction of non-decreasing arg ζ and consisting of the following parts:
1. The beam arg ζ = −β0, |ζ| ≥ ε;
2. The arc −β0 < arg ζ < β0 of circle |ζ| = ε;
3. The beam arg ζ = β0, |ζ| ≥ ε.

The contour γε(β0) divides the plane ζ into two unbounded simply connected domains G−
ρ

and G+
ρ lying to the left and to the right of γε(β0), respectively.

Let ρ > 1, π
2ρ < β0 <

π
ρ .

Denote

ψρ(w) =
1

2πi

∫
γε(β0)

exp(ζρ)

ζ − w
dζ. (19)

Then the following integral representations are valid:

Eρ(w) = ψρ(w), z ∈ G−
ρ , (20)

Eρ(w) = ρ exp(wρ) + ψρ(w), z ∈ G+
ρ . (21)

From these formulas we find

|Eρ(w)| ≤ ρ exp(Rewρ) + |ψρ(w)| , |argw| ≤ π
2ρ + η0,

|Eρ(w)| ≤ |ψρ(w)| , π
2ρ + η0 ≤ |argw| ≤ π, η0 > 0

 (22)
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|ψρ(w)| ≤
M

1 + |w|
, M = const (23)

Eρ(w) ≈ ρ exp(wρ), w > 0, w → ∞, (24)

Further, since Eρ(w) is real with real w, then

Reψρ(w) =
ρ

2πi

∫
γε(β0)

2ζ − Rew

(ζ − w)ζ − w)
exp(ζρ)dζ,

Imψρ(w) =
ρIm (w)

2πi

∫
γε(β0)

exp(ζρ)

(ζ − w)ζ − w)
dζ,

The information given here concerning the function Eρ(w) is taken from (see for instance
Niyozov at al., 2014; Juraev, 2018).

Formula (3) is true if instead of − i
4H

(1)
0 (λr) we substitute the function

Φσ(y, x) = − i

4
H

(1)
0 (λr) + gσ(y, x), (25)

where gσ(y, x) is the regular solution of the Helmholtz equation with respect to the variable y,
including the point y = x.

Then the integral formula has the form:

U(x) =

∫
∂Gρ

Nσ(y, x)U(y)dsy, x ∈ Gρ, (26)

where

Nσ(y, x) =

(
E
(
Φσ(y, x)u

0
)
D∗

(
∂

∂y

))
D(tT ).

For a fixed x ∈ Gρ we denote by S∗ the part of S on which β ≥ α. If x ∈ Gρ, then S = S∗

(in this case, β = τy2 and the inequality β ≥ α means that y lies inside or on the surface cone).

Theorem 1. Let U(y) ∈ A(Gρ) satisfy the inequality

|U(y)| ≤ 1, y ∈ T = ∂Gρ\S∗, (27)

If

Uσ(x) =

∫
S∗

Nσ(y, x)U(y)dsy, x ∈ Gρ, (28)

then we have the estimate

|U(x)− Uσ(x)| ≤ Cρ(λ, x)σ exp(−σγρ) , σ > 1, x ∈ Gρ. (29)

Here and below functions bounded on compact subsets of the domain Cρ, we denote by
Cρ(λ, x).

Proof. Using integral formula (26) and the equality (28), we get

U(x) = Uσ(x) +

∫
∂Gρ\S∗

Nσ(y, x)U(y)dsy, x ∈ Gρ.
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Taking into account inequality (27), we estimate the following

|U(x)− Uσ(x)| ≤

∣∣∣∣∣∣∣
∫

∂Gρ\S∗

Nσ(y, x)U(y)dsy

∣∣∣∣∣∣∣ ≤
∫

∂Gρ\S∗

|Nσ(y, x)| dsy, x ∈ Gρ. (30)

Let us estimate the integrals∫
∂Gρ\S∗

|Φσ(y, x)| dyy,
∫

∂Gρ\S∗

∣∣∣∣∂Φσ(y, x)

∂y1

∣∣∣∣ dsy
and ∫

∂Gρ\S∗

∣∣∣∣∂Φσ(y, x)

∂y2

∣∣∣∣ dsy.
Let σ > 0. Separating the imaginary part of equality (9), we get

Φσ(y, x) =
Eρ(σ

1/ργ)
2π

 ∞∫
0

(y2 − x2)ImEρ(σ
1/ρw)

u2 + r2
uI0(λu)√
u2+α2

−

−
∞∫
0

uReEρ(σ
1/ρw)

u2 + r2
I0(λu)du

 , y ̸= x, x2 > 0.

(31)

Given (31) and inequality
I0(λu) ≤ exp(λu), (32)

we have ∫
∂Gρ\S∗

|Φσ(y, x)| dy1 ≤ Cρ(λ, x)σ exp(−σγρ) , σ > 1, x ∈ Gρ. (33)

To estimate the integrals

∫
∂Gρ\S∗

∣∣∣∣∂Φσ(y, x)

∂y1

∣∣∣∣ dsy and

∫
∂Gρ\S∗

∣∣∣∣∂Φσ(y, x)

∂y2

∣∣∣∣ dsy, we use equalities
(11) and (12).

Considering equality (11) and inequality

I1(λu) ≤ λu exp(λu), (34)

we get ∫
∂Gρ\S∗

∣∣∣∣∂Φσ(y, x)

∂y1

∣∣∣∣ dsy ≤ Cρ(λ, x)σ exp(−σγρ) , σ > 1, x ∈ Gρ. (35)

Similarly, taking into account equality (12) and inequality (34), we estimate the following
integral ∫

∂Gρ\S∗

∣∣∣∣∂Φσ(y, x)

∂y2

∣∣∣∣ dsy ≤ Cρ(λ, x)σ exp(−σγρ) , σ > 1, x ∈ Gρ. (36)

From inequalities (33), (35) and (36), we obtain (29). Theorem 1 is proved.

Corollary 1. The limiting equality

lim
σ→∞

Uσ(x) = U(x),

holds uniformly on each compact set in the domain Gρ.
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Theorem 2. Suppose that U(y) ∈ A(Gρ) satisfies condition (27) and, on a smooth curve S the
inequality

|U(y)| ≤ δ, 0 < δ < 1, (37)

then the estimate is correct

|U(x)| ≤ Cρ(λ, x)σδ
( γ
R)

ρ

, σ > 1, x ∈ Gρ. (38)

Here is Rρ = max
y∈S

Rew0.

Proof. From (26) and equality (28) with, we have

U(x) =

∫
S∗

Nσ(y, x)U(y)dsy +

∫
∂Gρ\S∗

Nσ(y, x)U(y)dsy. (39)

We estimate the following

|U(x)| ≤

∣∣∣∣∣∣
∫
S∗

Nσ(y, x)U(y)dsy

∣∣∣∣∣∣+
∣∣∣∣∣∣∣

∫
∂Gρ\S∗

Nσ(y, x)U(y)dsy

∣∣∣∣∣∣∣ , x ∈ Gρ. (40)

Taking into account inequality (37), we estimate the first term inequality (40).∣∣∣∣∣∣
∫
S∗

Nσ(y, x)U(y)dsy

∣∣∣∣∣∣ ≤
∫
S∗

|Nσ(y, x)| |U(y)| dsy ≤

≤ δ

∫
S∗

|Nσ(y, x)| dsy, x ∈ Gρ.

(41)

To do this, we estimate the integrals∫
S∗

|Φσ(y, x)| dyy,
∫
S∗

∣∣∣∣∂Φσ(y, x)

∂y1

∣∣∣∣ dsy
and ∫

S∗

∣∣∣∣∂Φσ(y, x)

∂y2

∣∣∣∣ dsy
on a smooth curve S.

Considering equality (31) and inequality (32), we have∫
S∗

|Φσ(y, x)| dsy ≤ Cρ(λ, x)σ expσ(τρRρ − τρxρ2), σ > 1, x ∈ Gρ. (42)

Using equation (11) and inequality (34), we have∫
S∗

∣∣∣∣∂Φσ(y, x)

∂y1

∣∣∣∣ dsy ≤ Cρ(λ, x)σ expσ(τρRρ − τρxρ2), σ > 1, x ∈ Gρ. (43)

Similarly, using equality (12) and inequality (34), we get∫
S∗

∣∣∣∣∂Φσ(y, x)

∂y2

∣∣∣∣ dsy ≤ Cρ(λ, x)σ expσ(τρRρ − τρxρ2), σ > 1, x ∈ Gρ. (44)
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From (41) - (44), we get∣∣∣∣∣∣
∫
S∗

Nσ(y, x)U(y)dsy

∣∣∣∣∣∣ ≤ Cρ(λ, x)σδ expσ(τ
ρRρ − τρxρ2), σ > 1, x ∈ Gρ. (45)

The following is known∣∣∣∣∣∣∣
∫

∂Gρ\S∗

Nσ(y, x)U(y)dsy

∣∣∣∣∣∣∣ ≤ Cρ(λ, x)σ exp(−σγρ) , σ > 1, x ∈ Gρ. (46)

Now, considering (45) - (46), we have

|U(x)| ≤ Cρ(λ, x)σ

2
(δ exp(στρRρ) + 1) exp(−στρxρ2), σ > 1, x ∈ Gρ. (47)

Choosing σ from equality

σ =
1

τρRρ
ln

1

δ
, (48)

we obtain inequality (38). Theorem 2 is proved.

Let U(y) ∈ A(Gρ) and instead of U(y) on S, its approximation fδ(y) be set, respectively,
with an error 0 < δ < 1, max

S
|U(y)− fδ(y)| ≤ δ.

Set

Uσ(δ)(x) =

∫
S∗

Nσ(y, x)fδ(y)dsy, x ∈ Gρ. (49)

The following theorem takes place

Theorem 3. Let U(y) ∈ A(Gρ) on the entire boundary of ∂Gρ satisfy the boundary condition
(27). Then we have the estimate∣∣U(x)− Uσ(δ)(x)

∣∣ ≤ Cρ(λ, x)σδ
( γ
R)

ρ

, σ > 1, x ∈ Gρ. (50)

Proof. From the integral formula (26) and equality (49), we have

U(x)− Uσ(δ)(x) =

∫
S∗

Nσ(y, x) {U(y)− fδ(y)} dsy +
∫

∂Gρ\S∗

Nσ(y, x)U(y)dsy.

Now, repeating the proofs of Theorems 1 and 2, we obtain

∣∣U(x)− Uσ(δ)(x)
∣∣ ≤ Cρ(λ, x)σ

2
(δ exp(στρRρ) + 1) exp(−στρxρ2), σ > 1, x ∈ Gρ.

From here, choosing σ from equality (48), we obtain (50). Theorem 3 is proved.

Corollary 2. The limiting equality

lim
δ→0

Uσ(δ)(x) = U(x),

holds uniformly on each compact set in the domain Gρ.

94



D.A. JURAEV: ON A REGULARIZED SOLUTION OF THE CAUCHY...

3 Conclusion

In conclusion, we can say that on the basis of previous works (Juraev, 2012; Juraev, 2017a;
Juraev, 2017b; Juraev, 2018a; Juraev, 2018b; Juraev, 2018c), we constructed the Carleman
matrix, and using this function, we found a regularized solution of the Cauchy problem for the
matrix factorizations of the Helmholtz equation for a two-dimensional bounded domain in an
explicit form. Thus, the functional Uσ(δ)(x) determines the regularization of the solution of
problem (1)-(2).
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